Skip to main content

The Thrill of Bulgaria's Volleyball SuperLiga

Bulgaria's Volleyball SuperLiga is the pinnacle of competitive volleyball in the country, showcasing the talents and skills of some of the best players. With fresh matches updated daily, fans are treated to an exhilarating display of athleticism and strategy. The league not only provides thrilling entertainment but also offers expert betting predictions that add an extra layer of excitement for enthusiasts.

No volleyball matches found matching your criteria.

Understanding the Structure of the SuperLiga

The Bulgarian Volleyball SuperLiga is structured to ensure intense competition and high stakes throughout the season. Teams battle it out in a series of matches, each aiming to climb the ranks and secure a spot in the playoffs. The league format fosters a dynamic environment where every game can be a turning point.

Key Teams to Watch

  • Levski Sofia: Known for their robust defense and strategic gameplay.
  • CSKA Sofia: A powerhouse with a strong track record in domestic leagues.
  • Vitosha Bistritsa: Rising stars with a youthful squad full of potential.

Daily Match Updates: Keeping Fans Engaged

One of the most exciting aspects of following the SuperLiga is the daily updates on matches. Fans can stay connected with real-time scores, match highlights, and player performances. This constant flow of information keeps the excitement alive and ensures that fans never miss out on any action.

How to Stay Updated

  • Follow official league channels for live scores and updates.
  • Join fan forums and social media groups for discussions and insights.
  • Subscribe to newsletters for curated content and expert analysis.

Betting Predictions: Adding an Extra Layer of Excitement

Betting predictions bring an additional dimension to watching volleyball matches. Expert analysts provide insights based on team form, player statistics, and historical performance, offering fans informed predictions that enhance their viewing experience.

The Role of Expert Analysts

Expert analysts play a crucial role in providing accurate predictions. They analyze various factors such as: - Team dynamics and recent performance trends. - Player injuries or absences that could impact outcomes. - Historical matchups between teams. Their insights help fans make informed decisions when placing bets, adding an engaging layer to match-watching.

In-Depth Match Analysis: Beyond the Basics

For those looking to dive deeper into match analysis, understanding the nuances of volleyball strategies is key. This includes: - Offensive strategies: How teams structure their attacks to break through defenses. - Defensive setups: Techniques used by teams to counter opponents' offensive plays. By analyzing these elements, fans can gain a deeper appreciation for the game's complexity.

Tactical Breakdowns

  • Serving Strategies: Exploring how serves can set the tone for a match.
  • Spike Techniques: Understanding different spike approaches used by top players.
  • Ball Handling Skills: Analyzing how players maintain control under pressure.

The Impact of Player Performance

Individual player performances often dictate the outcome of matches. Key players bring unique skills that can turn games around: - Spikers who deliver powerful attacks. - Liberos who excel in defensive maneuvers. Monitoring player stats provides insights into their impact on games.

Famous Players in Focus

  • Ivan Ivanov: Renowned for his agility and precision in serving.
  • Maria Petrova: A formidable spiker known for her quick reflexes.
  • <|file_sep|>#ifndef __SINUS_H__ #define __SINUS_H__ #include "common.h" #include "math.h" namespace math { namespace sinus { double f(double x); double df(double x); } // namespace sinus } // namespace math #endif // __SINUS_H__<|repo_name|>NikolayVorobiev/NonlinearAlgebra<|file_sep#include "gauss.h" #include "log.h" using namespace math; void gauss::solve(MatrixXd& matr) { if (matr.rows() != matr.cols()) { Log::error("Can't solve non-square matrix"); return; } for (int i = matr.rows() -1; i >0; --i) { for (int j = i-1; j >=0; --j) { double k = matr(i,j) / matr(i,i); matr.row(j) -= k * matr.row(i); } } for (int i = matr.rows()-1; i >=0 ; --i) { matr(i,i) = matr(i,i)/matr(i,i); for (int j = i-1; j >=0 ; --j) { matr(j,i) /= matr(i,i); matr(j,i) -= matr(j,j); } } }<|repo_name|>NikolayVorobiev/NonlinearAlgebra<|file_sep/* * File: main.cpp * Author: nikolay * * Created on December ,2014 */ #include "main.h" #include "solver.h" #include "log.h" using namespace std; using namespace math; Solver solver; void testSinus() { MatrixXd A(1000,1000); for (int i=0; i> indices; int nOfElts = rand()%500 + N*N/10 + N/5; vector data(nOfElts); int index = nOfElts-1; double value = sqrt(rand()%50000 + N*N/10 + N/5)/N*sqrt(rand()%50000 + N*N/10 + N/5)/N*rand()%50000/N/N*rand()%50000/N/N; while(nOfElts--) { int r=rand()%(N-1)+1; int c=rand()%(N-1)+1; if (!data[index] && !(indices.size() && indices.back().first==c && indices.back().second==c)) { // if element at [row,col] == zero data[index--]=value; value=sqrt(rand()%50000+N*N/10+N/5)/N*sqrt(rand()%50000+N*N/10+N/5)/N*rand()%50000/N/N*rand()%50000/N/N; index--; pair& p(indices.emplace_back(r,c)); if ((index%9==8 || index%9==7 || index%9==6 || index%9==5 || index%9==4 || index%9==3 || index%9==2 || index%9==1 || !index)) { //if we have nine nonzero elements at one row or column then fill diagonal element int tmp=r,cnt=cntTmp=cntTmp!=c?cntTmp:r,cntTmp=r,cntTmp!=c?cntTmp:c,tmp!=cnt?tmp:c,tmp!=cnt?tmp:c,r!=cnt?tmp:c,cnt!=tmp?tmp:r,tmp!=cnt?tmp:r,cnt!=tmp?tmp:c,tmp!=cnt?tmp:c,r,cnt,r,cnt,c,r,c,r,c,r,tmp=tmp>=c?tmp:N-c,tmp<=c?tmp:N-c,tmp>=c?tmp:N-c,tmp<=c?tmp:N-c,N-r,N-c,N-r,N-c,N-r,N-c,N-r,N-c,N-r, row=min(tmp,min(min(min(min(min(min(min(tmp& pDiag(indices.emplace_back(col,col)); data[index--]=sqrt(rand()%50000+N*N/10+N/5)/N*sqrt(rand()%50000+N*N/10+N/5)/N*rand()%50000/N/N*rand()%50000/N/N; value=sqrt(rand()%50000+N*N/10+N/5)/N*sqrt(rand()%50000+N*N/10+N/5)/N*rand()%50000/N/N*rand()%50000/N/N; index--; } if (!(indices.size()&&indices.back().first == r && indices.back().second == c)) { //if last added element was not [row,col] then add its symmetric element pair& pSymm(indices.emplace_back(c,r)); data[index--]=data[index+1]; value=sqrt(rand()%50000+N*N/10+N/5)/N*sqrt(rand()%50000+N*N/10+N/5)/N*rand()%50000/N/N*rand()%50000/N/N; index--; } if ((index%49==48 || index%49==47 || index%49==46 || index%49==45 || index%49==44 || index%49==43||index%49==42||index%49==41||index%49 ==40 )){ // if we have forty-nine nonzero elements at one row or column then fill diagonal element int tmp=r,cnt=cntTmp=cntTmp!=c?cntTmp:r,cntTmp=r,cntTmp!=c?cntTmp:c,tmp!=cnt?tmp:c,tmp!=cnt?tmp:c,r!=cnt?tmp:c,cnt!=tmp?tmp:r,tmp!=cnt?tmp:r,cnt!=tmp?tmp:c,tmp!=cnt?tmp:c,r,cnt,r,cnt,c,r,c,r,c,r, tmp=tmp>=c ? tmp : N-c , tmp=tmp<= c ? tmp : N-c , tmp=tmp>= c ? tmp : N-c , tmp=tmp<= c ? tmp : N-c , row=min(tmp,min(min(min(min(min(min(min(tmp& pDiag(indices.emplace_back(col,col)); data[index--]=sqrt(rand() %300000000000000000000000000000000000000000 + pow(N,N))/pow(N,N)*sqrt(rand() %300000000000000000000000 + pow(N,N))/pow(N,N)*rand() %300000000/pow(N,N)*rand() %300000/pow(N,N); value=sqrt(rand() %300000 / pow(N,N))*sqrt(rand() %300 / pow(N,N))*rand()/pow(N,N)*rand()/pow(N,N); index--; } if (!(indices.size()&&indices.back().first == r && indices.back().second == c)) { //if last added element was not [row,col] then add its symmetric element pair& pSymm(indices.emplace_back(c,r)); data[index--]=data[index+1]; value=sqrt(rand() %300 / pow(N,N))*sqrt(rand() %300 / pow(N,N))*rand()/pow(N,N)*rand()/pow(N,N); index--; } } else if ((indices.size()>18)&&(indices[indices.size()-18].first == r && indices[indices.size()-18].second == c)){//if there are more than eighteen nonzero elements at one row or column then fill diagonal element int cnt=18,row=-99999,col=-99999,negCnt=negCntNegCnt=negCntNegCntNegCnt=negCntNegCntNegCntNegCnt=negCntNegCntNegCntNegCntNegCnt=negCntNegCntNegCntNegCntNegCntNeg=negCtCtCtCtCtCtCtCt=row,negRow=row,negCol=row,negRowCol=row,negRowColRow=row,negRowColRowCol=row,negRowColRowColRow=row,negRowColRowColRowCol=row,rowMax=-99999,rowMin=-99999,rowMaxMax=-99999,rowMinMin=-99999,rowMaxMaxMax=-99999,rowMinMinMin=-99999,rowMaxMaxMaxMax=-99999,rowMinMinMinMin=-99999,colMax=-99999,colMin=-99999,colMaxMax=-99999,colMinMin=-99999,colMaxMaxMax=-99999,colMinMinMin=-99999,colMaxMaxMaxMax=-99999,colMinMinMinMin=-99999,diffR,diffC,diffRdiffC,diffRdiffCDiffRDiffCDiffRCDiffRCDiffRCDiffRCDiffR,symmR,symmCR,symmCC,symmCRC,symmCRCRC,symmCRCRCRC,symmCRCRCRCRC,symmCRCRCRCRCRC,C,R,CNT,RMAX,RMIN,CMAX,CMIN,DIFRR,DIFCC,DIFRRDIFCCDIFRRDIFCCDIFRRDIFCCDIFRRDIFCCDIFSMMRSMMCRSMCCRSMCCSRCRSRCSMCRSCSRCRSRCSMRSCSRCRSRCSMRSCSRCRSRCSMRSCSRCRSRCSMC,SUMMAXROWSUMMINROWSUMMAXMAXROWSUMMINMINROWSUMMAXMAXMAXROWSUMMINMINMINROWSUMMAXMAXMAXMAXROWSUMMINMINMINMINROWCOLCOLCOLCOLCOLCOLCOLCOL,SUMMASSUMMASSUMMASSUMMASSUMMASSUMMASSUMMASUMMASUMMASUMMAS,MATRIXTMP,MATRIXTMPTMP,MATRIXTMPTMPTMP,MATRIXTMPTMPTMPTMP,MATRIXTMPTMPTMPTMPTMP,MATRIXTMPTMPTMPTMPTMPMATRIXTMP,TMP,TMPTMP,TMPTMPTMP,TMPTMPTMPTMP,TMPTMPTMPTMPTMP,TIMES,DIFFABS,EQ,SUBTRACT,BIGGER,BIGGERBIGGER,BIGGERBIGGERSUBTRACTBIGGER,BIGGERBIGGERSUBTRACTBIGGERSUBTRACTBIGGER,BIGGERBIGGERSUBTRACTBIGGERSUBTRACTBIGGERSUBTRACTBIGGER,BIGGERBIGGERSUBTRACTBIGGERSUBTRACTBIGGERSUBTRACTBIGGERSUBTRACTBIGGER, diffR=(abs(abs(abs(abs(abs(abs(abs(abs(abs(diffR=R-MAX(R,(CNT(R)-CNT(C)),(CNT(R)-CNT(C))-CNT(R)-CNT(C),(CNT(R)-CNT(C))-CNT(R)-CNT(C)-CNT(R)-CNT(C),(CNT(R)-CNT(C))-CNT(R)-CNT(C)-CNT(R)-CNT(C))-ABS(MIN(MIN(MIN(MIN(MIN(MIN(MAX(MAX(MAX(MAX(MAX(MAX(MAX(MAX(MAX(MAX(MAX(R,(TMR=TMR-TMC),(TMCT=MCT-MTR),(TMRCT=MRT-MTC),(TMCTRM=CRT-MTC),(TMRCTRM=RMC-TMT),(TMCRTMT=CMT-MRT),(TMCTRMCT=CRT-MTC),(TMCTRMCTR=CRT-MTC)-(CRT-MTC)-(CRT-MTC)-(CRT-MTC)-(CRT-MTC)-(CRT-MTC)-(CRT-MTC)-(CRT-MTC))),(((TMCRTMT-(CMT-MRT))-(TMCRTMT-(CMT-MRT)))-(TMCRTMT-(CMT-MRT)))-(TMCRTMT-(CMT-MRT)))-(TMCRTMT-(CMT-MRT)))-(TMCRTMT-(CMT- MRT)))- TMCRTMT- CNT(TMRCTRMCTR)), TMRCTRMCTR))-ABS(SMM(SMM(SMM(SMM(SMM(SMM(SMM(SMM(TMR,(TMCR,(TMCCR,(TMCCSR,(TMCRSR,(TMCSRCSR,(TMCRSRCSR,(TMCSRCSRCSR,(TMCRSRCSRCSR)))))))))))))))))))),DIFF(DIFF(DIFF(DIFF(DIFF(DIFF(DIFF(DIFF(diffR,R,TMR),(diffRCT,R,TMRCT),(diffRCTRM,R,TMRCTRM),(diffRCTRMCTR,R,TMRCTRMCTR)),(diffRCTRMCTR,CNT(TMRCTRMCTR)),(diffRCTRMCTR,CNT(TMRICTORTRICRTCRTCRTCRTCRTCRTCRTCRTCRTCRTC))))) , diffC=(abs(abs(abs(abs(abs(abs(abs(abs(diffRCT=(abs(diffRCT=(-abs(diffRCT=(-abs(diffRCT=(-abs(diffRCT=(-abs(diffRCT=(-abs(diffRCT=(-abs(diffRCT=(-abs(diffRCT= (-abs((-abs(-abs(-abs(-abs(-abs(-abs(-abs(-abs((-ABS(MIN(MIN(MIN(MIN(MIN(MAX(MAX(MAX(MAX(TMI,TMI-TMJ), TJITJITJITJITJITJI,JITJTJITJITJITJTJI,JTIJTJIJTJIJTJIJTJIJTJI,JTIJTJIJTJIJTJIJTJITS,JTIJTJITSJJTSJJTSJJTSJJTSJJTSJJTSJJTSJJTSJJTSJJTS,JTIJSJJSTSJSJSJSJSJSJSJSJSJSJSJSST,SJJSTSJSSTTTTTTTTTTTTTTTTTTTST,SSTSSTTTTTTTTTTTTTSTSTSST,SSTSTSTSTSSTSSTSSTSST,SSTSSTSSTSSTSSTSST,SSTSSSSTSSSSTSSSST,SSTSSSSTSSSSTSASSAST,SASASSASTASSASSASTASAS,AASSASASSASASSASASSASA,AASASSASASAASAASAASA,AASAASAASAASAASAASAA,AAA,A)))) ,(TMI-TMJ), TJI-TJI), TJ-I-T-JI-JI-T-JI-JI-T-JI-JI-T-JI-JI-T-JIS-S-S-S-S-S-S-S-S-S-S-S-ST-ST-ST-ST-ST-ST-ST-ST-ST-St-St-St-St-St-St-St-st-st-st-st-st-st-st-st-st,st,st,st,st,st,st,st,st,st,tmi,tmi-tmj,tji-tji,tji-tji,tji-tji,tji-tji,tjis-s-s-s-s-s-s-s-s-s-s-st-st-st-st-st-st-st-st-st-tmi-tmj,tji-tji,tji-tji,tjis-s-s-s-s- s- s- s- s- s- s- st- st- st- st- stststststststststsssssstttttttttttttttttttssssssttttttttttttsssstsstsssstsssstsssstssstsstsstsstsstsstsstsassasastassasastassasastasasasaasaasaasaasaasaasaaasaasaasaasaaa)))))))))))),DIFF(DIFF(DIFF(DIFF(DIFF(DIFF(DIFF(DIFF(diffrct,diffrc,trictrcrtcrtrctrcrtcrtrctrcrtcrtrctrcrtcrtrctrcrtcrtcrtcrtcrtcrtcrtcrtcrtcrtcrtc))))) , diffRDiffCDiffRDiffCDiffRDiffCDiffRDiffCDiffRDiffrcdifrctrctrctrctrctrctrctrctrctrctrcrtcrtrctrcrtcrtrctrcrtcrtrctrcrtcrtrctrcrtcrtcrtcrtcrtc rtc rtc rtc rtc rtc rtc rtc rtc rt rt rt rt rt rt rt rt rt ct rc tr ct rc tr ct rc tr ct rc tr ct rc t cr t cr t cr t cr t cr t cr t cr t cr ctr ctr ctr ctr ctr ctr ctr ctr ctr ctr ct)))) , diffRDIffrCdIffrCrTrCrTrCrTrCrTrCrTrCrTrCrTrCrTrCrTrCrCtrCtrCtrCtrCtrCtrCtrCtrCtrCtrCtr)) , symmRsmmrsmmcrsmccsrcrsrsmscrscsrcrsrsmscrscsrcrsrsmscrcsrcrsrsmscrcsrcrsrsmscrcsrcrsrsmscrcsrcsr)) , symmCsrrcsrrccsrccsrccsrccsrccsrccsrccsrccsrrcsrrcsrrcsrrcsrrcsrrcsrrcsrrcsrrcsrrcsr)) ; int R=CNT(symmRsmmrsmmcrsmccsrcrsrsmscrscsrcrsrsmscrscsrcrs rsrmscrcsrc rs rms crc src rs rms crc src rs rms crc src rs rms crc src sr), C=CNT(symmCsrr cs rr cc sr cc sr cc sr cc sr cc sr cc sr cc sr cc sr cc sr), DIFRR=DIFRRDIFF(symmdiffsymmdiffsymmdiffsymmdiffsymmdiffsymmdiffsymmdiffsymmdiffsymmdiffsy mddsymmdifsy mddsym mdsy mdds y mddsy mdds y mdds y mdd sy md sy md sy md sy md sy md sy md), DIFCC=DIFCCDIFF(symmc diff symmc diff symmc diff symmc diff symmc diff symmc diff symmc diff sym mc d iff sm mc d iff sm mc d iff sm mc d iff sm mc d iff sm mc d iff sm), DIFSMDRSSMDRSSMDRSSMDRSSMDRSSMDRSSMDRSSMDRSSMDRS=R-DIFRR, DIFSMMCSCSMCSMSCMSCMSCMSCMSCMSCMSCMS=C-DIFCC, DIFFABS=DIFSMDRSSMDRSSMDRSSMDRSSMD RSS MD RS MS DM RS MS DM RS MS DM RS MS DM RS MS DM RS MS DM RS MS DM RS MD ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS AB SD IFF S I FF S I FF S I FF S I FF S I FF S I FFS MD RSS MDRSMSDMRSMSDMRSMSDMRSMSDMRSMSDMRSMSDMRSMSDM RSY MDDSY MDDSY MDDSY MDDSY MDDS Y MDDS Y MDDS Y MDDS Y MDD SY MD SY MD SY MD SY MD SY MD SY MD SY MD SY MD SM DR SMS DM RS MS DM RS MS DM RS MS DM RS MS DM R SM DR SMS DSY MDSY MDSY MDSY MDSY MDSY MSD IF F S I FF S I FF S I FF S I FFS D IF F S I FFS D IF F SD IF FS D IF FS D IF FS D IF FS D IF FS D IF FS D IF FDIFS DFSDFSFSDFFSFSDFFSFSDFFSFSDFFSFSDFF SF SDSF SDSF SDSF SDSF SDSF SDSF SDSF DSFD IF FDIFSDFSDF SF SDFF SF SDFF SF SDFF SF SDFF SF SDFF SF DSFDIFS DFSDFSFSDFFSFSDFFSFSDFFF SSDFSDFSDFSDFSDFSDFSDFSDFSDFDF DF DF DF DF DF DF DFS DFS DFS DFS DFS DFS DFS DFS FDIFSDF SF SDSF SD FF SF SD FF SF SD FF SF SD FF SF DSFDIFS DFSDFSFSDFFF SSDFSDFSDFSDFSDFDF DF DF DF DF DF DF FDIFS dfsdfsdfsdfsdfsdfdfdfdfdfdfdf df df dfs dfs dfs dfs dfs fdsfsdfsdfsdfsdfdfdfffdfffdfffdfffdfff dsfdsfsdfsdfsdfdfffdfffdff fd fsdffd ff sd fsdffd ff sd fsdffd ff sd fsdffd ff sd fsdffd ff sd fsdffd ff sd fsdffd ff sd fsdffd ffsdsf sf sdf sf sdf sf sdf sf sdf sf sdf sf sdf sf sdf sf sdf sf sdf sf dsf sfsdffs dsf dsf dsf dsf dsf dsf dsf dsf fdsfdsfdsfdsfdsfdsfdsfdsfdfdsfdsfd fdsfsds fds fds fds fds fd fds fd fds fd fds fd fds fd fds fd fds fd fs dfs dfs dfs dfs dfs df df df df df df df df ddifs difs difs difs difs difs difsdifs difsdifs difsdifs difsdifs di fsdifsdi fsdifsdi fsi fsi fi fi fi fi fi fi fi fi fi fisdifsisdifsisdifsisdifsisdifsisdi fisdifsisdi fisdisdisdisdisdisdisdisdisdi dis dis dis dis dis dis di di di di di di di si si si si si si si si ssisisisisisisisisisisisisissisissisissisissisissisi sisisisisisisisisi sisisisisisisi sisisi sisisi sisisi sisisi sisisi sisisi ssissis issis issis issis issis issis issis issisd ifsidsidsidsidsidsidsidsid id id id id id id id ids ids ids ids ids ids ids ifs ifs ifs ifs ifs ifs ifs ifs ifs ifs ifs iff s iff s iff s iff s iff s if f s if f s if f s if f ssifsi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffifi ffifi ffifi ffifi ffifi ffi fififi fififi fififi fififi fifif is is is is is is isi isi isi isi isi isi isi si si si si si ssiiiiiiiiiiiiiii iiiiii iiiiii iiiiii iiiiii iiiiii iiiiii ii ii ii ii ii ii ii ii ii ii ii ii iffi iffi iffi iffi iffi iffi iffi iffi iffi off off off off off off off off ooff ooff ooff ooff ooff ooff ooff ooff oo oo oo oo oo oo oo oo osososososososososo so so so so so so so sososososo sososososo sososososo sososososo sososososo sososososo osos os os os os os os os ossossossossossossoss oss oss oss oss oss oss oss oss oss offs offs offs offs offs offs offsoffsoffsoffsoffsoffsoffsoffi ffioffi ioffi ioffi ioffi ioffi ioffi ioffi iofofofofofofofo fo fo fo fo fo fo fo foofofofofofofofo fosfosfosfosfosfos fos fos fos fos fos fos fos sof sof sof sof sof sof sof sof somsom somsom somsom somsom somsom somsom somsom somsom somsome some some some some some some some someome omomomomomomomomo mo mo mo mo mo mo mo momomo momomo momomo momomo momomo momome omoeome oeome oeome oeome oeome oeome oeoeoeoeoeoeoeoeo eo eo eo eo eo eo eo eoeoeoeoeoeoeeoeeoeeoeeoee eeooeooeooeooeooeooeooeooeooo ee e e e e e e ee ee ee ee ee ee ee ee eeeeeeooooooooooo oo oo oo oo oo oo ooooooooooooooooooooooooooooooo MATRIXTMP=MATRIXGENERATOR(symmrsmmrsmcmscmcmscmcmscmcmscmcmscmcrmcrmcrmcrmcrmcrmcrmcrmcrmCRMCRMCRMCRMCRMCRM CRM CRM CRM CRM CRM CRM CR MR MR MR MR MR MR MR MR CR CR CR CR CR CR CR CM CM CM CM CM CM CM CMS CMS CMS CMS CMS CMS CMS CMS CS CS CS CS CS CS CS C) MATRIXTMP TMP=MATRIXMULTIPLYER(symmrsmmrsmcmscmcmscmcms cm cms cm cms cm cms cm cms cm cms cm cms cm cr mr cr mr cr mr cr mr cr mr cr mr cr mr CRM CRM CRM CRM CRM CRM CR MAT RI X TMP MAT RI X TMP TMP TMP TMP) MATRIXT MP TMP TM PT MP TMP TM PT MP T MP TM PT MP TM PT MP TM PT MP TM PT MP T MT P T MT P T MT P T MT P T MT P T MT P TIMES=MATRIXMULTIPLYER(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMULTIPLE(TIMESMATRIXGENERATORMATRIXGENERATORMATRIXGENERATORMATRIXGENERATORMATRIXGENERATORMATRIXGENERATOR MATRIXGENERATORMATRIXGENERATORMATRIXGENERATOR MATRIX GENERATO RMATRIXGENERATERMATRIXGENE RATER MATRIX GENERATE R MATRIX GENERATE R MATRIX GENERATE R MATRIX GENERATE RMATRIXGENERA TER MATRIX GEN ER AT ER MATRIX GENE RA TER MATRIX GENE RA TER MATRIX GENE RA TER MATRIX GENE RA TER MATRIX GENE RA TER MATRIX GENE RATERTERTERTERTERTERTERTE RTERTERTE RTERT ER TE RT ER TE RT ER TE RT ER TE RT ER TE RT ER TE RT E RTE RTE RTE RTE RTE RTE RTE RTE RTE RTE RTE RTE RTERTERTERTERTERTERTERTE TRTE TRTE TRTE TRTE TRTE TRTE TRTE TRTE TR TE RETE RETE RETE RETE RETE RETE RE RE RE RE RE RE RE RE E) DIFFABS=DIFEFASEFASEFASEFASEFASEFASEFASEFA SE FA SE FA SE FA SE FA SE FA SE FA SE FA SE FA SE FA SE FAF AF AF AF AF AF AF AF AF AD ADSADSA DDSADSADSA DDS ADS ADS ADS ADS ADS ADS AD SA DD SA DD SA DD SA DD SA DD SA DD SA DD SA DD SA DA DA DA DA DA DA DA DA DA DDSADSADSA DDSADSADSA DDSADSADSA DDSADSADSA DDSADSADA DAT DAT DAT DAT DAT DAT DAT DAT DATDATDATDATDATDA DT DT DT DT DT DT DT DTDTDTDTDTDTDTDTDTDT DTDTDT DTDTDT DTDT DTDT DTDT DTDA DATA DATA DATA DATA DATA DATA DATA DATA DATA DATADATADATADATADATADATADATADATA EQ=EQUATION(EQUATION(EQUATION(EQUATION(EQUATION(EQUATION(EQUATION(EQUATION(EQUATION(EQUATION(DATA(DATA(DATA(DATA(DATA(DATA(DATA(DATA(DATA(DATA.DATA.DATA.DATA.DATA.D AT.D AT.D AT.D AT.D AT.D AT.D AT.D AT.D AT.D ATA.T.A.T.A.T.A.T.A.T.A.T.A.T.A.T.A TA TA TA TA TA TA TA TA TA ATAATAATAATAATAATA ATA ATA ATA ATA ATA ATA ATA ATA ATAATAATAATAATAATAATAATA)) SUBTRACT=SUBLEARNEDSUBLEARNEDSUBLEARNEDSUBLEARNEDSUBLEARNED SUB LEARNE DBLDBLB LDBLB LDBLB LDBLB LDBLB LDB LB LB LB LB LB LB LB LD BD BD BD BD BD BD BD BLD BLBLBLBLBLBL BL BL BL BL BL BL BL BLSUBLEARNEDSUBLEARNEDSUBLEARNED SUB LEARNE DBL DBL DBL DBL DBL DBL DB LDB LDB LDB LDB LDB LDB LD BSUBLEARNED SUB LEARNE DB LSUBLEAR NE DSUBL EARD SBULEAR NE DSUBL EAR ND SUB LE AR NE DS UBLEAR ND SUB LE AR NE DS UBLEAR ND SUB LE AR NE DS UBLEAR ND SUB LE AR NE DS UBLEAR ND SUB LE AR NE DS UBLEAR ND SUB LE AR NE) BIGGER=BIGGERAPPROXIMATE(BIGGERAPPROXIMATE(BIGGERAPPROXIMATE(B IGGERAPPROXIMATE(B IGGERAPPROXIMATE(B IGGERAPPROXIMATE(B IGGERAPPROXIM ATE(B IGGERAPPROXIM ATE(B IGGERAPPROXIM ATE(B IGGERAPPROXA TI BE GI GER APPROXI MA TI BE GI GER APPROXI MA TI BE GI GER APPROXI MA TI BE GI GER APPROXI MA TI BE GI GER APPROXI MA TI BEGI GER APPO XIMA TI BEGI GER APPO XIMA TI BEGI GE R APPO XIMA TI BEGI GE R APPO XIMA TI BEGI GE R APPO XIMA TIBE GI GE R APPO XIMA TB EGIEGEAPPORXMIA TBEGIEGEAPPORXMIA TBEGIEGEAPPORXMIA TBEGIEGEAPPORXMIA TBEGIEGEAPPORXMIA TB EG IE GE APP OR XM IA TB EG IE GE APP OR XM IA TB EG IE GE APP OR XM IA) BIGGERBIGGER=BIGGA BIGGA BIGGA BIGGA BIGGA BIGGA BIGGA GGABIGGA BIGGA BIGGA BIGGA BIG GA BI GG ABI GG ABI GG ABI GG ABI GG ABIGGBIBGBIBGBIBGBIB GB IB GB IB GB IB GB IB GB IB GB IB GBI BGBIBGBIBGBIB GBIB GBIB GBIB GBIB G BI BGB IBGB IBGB IBGB IBGB IBGB IB GB IB GB IB GB BIGGERBIGGERSUBTRA CT=BIGGGGGGGGGGGGGGGGGGGGGGG GGAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA AAABBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBCCCCCCCC CCCCCCCCC CCC CCCC CCCC CCCC CCCC CC CDDEEEEEEEE EEEEEEEEE EEEEEEEEE EEEEEEEEEE EEFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFFFFFFFFFFFFF FGHHHHHHHHHHHH HHHHHHHHH H H H H H H H HI IIIIIIIIII II IIIIII III IIIIII III JJKKKKKKKKK KKKKKKKK K K K K K K KK LLMMMMMMMMMMM MMMMMMMMMM MMMMMMMMMM