Comprehensive Analysis of Maccabi Haifa U19: A Sports Betting Guide
Overview of Maccabi Haifa U19
Maccabi Haifa U19 is a prominent youth football team based in Israel, competing in the Israeli Premier League for Under-19 teams. Known for its strong academy system, the team plays a crucial role in developing young talent for professional football. The team operates under the guidance of their current coach and is renowned for its tactical discipline and competitive spirit.
Team History and Achievements
Maccabi Haifa U19 has a rich history, marked by numerous titles and accolades. The team has consistently performed well in the league, often finishing in top positions. Notable seasons include their championship-winning campaigns, where they showcased exceptional skill and teamwork. Their achievements have solidified their reputation as one of the leading youth teams in Israel.
Current Squad and Key Players
The current squad boasts several standout players who are pivotal to the team’s success. Key players include:
- Player A (Forward): Known for his goal-scoring prowess and agility.
- Player B (Midfielder): Renowned for his playmaking abilities and vision on the field.
- Player C (Defender): A cornerstone of the defense with excellent tackling skills.
Team Playing Style and Tactics
Maccabi Haifa U19 typically employs a 4-3-3 formation, focusing on attacking play while maintaining a solid defensive structure. Their strategy emphasizes quick transitions and utilizing wide areas to create scoring opportunities. Strengths include their cohesive teamwork and tactical flexibility, while weaknesses may arise from occasional lapses in concentration during high-pressure matches.
Interesting Facts and Unique Traits
The team is affectionately known as “The Yellow-Blue” due to their iconic colors. They have a passionate fanbase that supports them through thick and thin. Rivalries with teams like Hapoel Tel Aviv U19 add an extra layer of excitement to their matches. Traditions such as pre-match rituals are cherished by both players and fans alike.
Lists & Rankings of Players, Stats, or Performance Metrics
Maccabi Haifa U19’s top performers are consistently ranked among the best in the league:
- ✅ Player A – Top goal scorer with 15 goals this season.
- ❌ Player D – Struggling with form but crucial when fit.
- 🎰 Player E – Rising star with potential to break into the first team.
- 💡 Player F – Tactical genius with impressive assist record.
Comparisons with Other Teams in the League or Division
In comparison to other teams in the division, Maccabi Haifa U19 stands out for their balanced approach between attack and defense. While teams like Beitar Jerusalem U19 may focus more on offensive tactics, Maccabi Haifa U19 maintains a strategic equilibrium that often gives them an edge in tight contests.
Case Studies or Notable Matches
A notable match that highlights Maccabi Haifa U19’s capabilities was their thrilling victory against Bnei Yehuda Tel Aviv U19 last season. The game ended 3-2 after extra time, showcasing their resilience and ability to perform under pressure.
| Statistic | Maccabi Haifa U19 | Rival Team |
|---|---|---|
| Total Goals Scored This Season | 45 | 38 |
| Average Goals Per Game | 1.8 | 1.5 |
| Last Five Matches Form (W/D/L) | W-W-D-L-W | L-D-W-L-W |
| Odds Against Winning Next Match | +150 (Favorable) | -120 (Unfavorable) |
Tips & Recommendations for Analyzing the Team or Betting Insights 📊💡📈📉⚽️🔍🎲🎯⚖️⏱️💸💵💰🎟️😃😤😮😲😱😎😍❤️💔☝️⬆️⬇️✅❌👍👎💪🙏🔥❄️🌪️⚡️☀️☁️☔️❄️💧🌊⛰️🏞️🏝️⛺️♨️💡✨✳️♻️♿♾♈♉♊♋♌♍♎♏♐♑♒♓♀♂⚖⚗✝☸☯✡☪★☆☀☁⛅☂☃❄☄◯●◼◻▪▫▭▯△▲▼►◀↔↕↖↗↘↙↑↓→←∞≠≈°±º»«§¶•…⁇⁈⁉❝❞‘’“”‰‱†‡‹›«»©®™✓✔➕➖➗➰➿⟐⟕⟘⟙⟚⟛⟜⟝⟞⟟➀➁➂➃➄➅➆➇➈➉①②③④⑤⑥⑦⑧⑨⑩№ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩℴℵℶℷℸℹ℺℻ℼℽℾℿ𝟘𝟙𝟚𝟛𝟜𝟝𝟥𝟤𝟥𝟦𝟳𝟨𝟳𝟳7′′″‴‰‱″‴¶§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿¡¦£₤¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿¡¦£₤¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿¡¦£₤¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿¡¦£₤¤¥)))))))
- Analyze recent form: Focus on head-to-head records against upcoming opponents to gauge performance trends.
- Evaluate key player availability: Injuries or suspensions can significantly impact team dynamics; monitor player fitness closely.
- Leverage statistical insights: Utilize performance metrics such as goals scored/conceded per game to make informed betting decisions.
- Bet on value odds: Look for discrepancies between odds offered by different bookmakers to find potential value bets.
- Carefully consider match context: Assess factors like home/away status or weather conditions that could influence game outcomes.
Famous Quotes about Maccabi Haifa U19 🗣:
“Maccabi Haifa’s youth system is second to none; it’s where future stars are born.” – Former Coach Zvi Rosenfeld
“The passion of these young players is infectious; they play with heart every single match.” – Fan Club President David Cohen
Moving Forward: Pros & Cons of Current Form 🔄:
- Pros ✅:
- Solid defensive record keeps them competitive even when not at full strength offensively.
- Youthful energy provides an edge over more experienced but less dynamic opponents.
- Cons ❌:
- Inconsistency in performance can lead to unexpected results against weaker teams.
float,float,float
nll_loss
negative log likelihood loss averaged across batch elements
,
self._stats_cache[‘ntokens’]
int -> int
number of tokens processed during this iteration
,
self._stats_cache[‘nsentences’]
int -> int
number of sentences processed during this iteration
,
self._stats_cache[‘sample_size’]
int -> int
effective sample size used in this iteration
,
self._stats_cache[‘accuracy’]
float -> float
accuracy averaged across batch elements
,
self._stats_cache[‘wer’]
float -> float
word error rate averaged across batch elements
WER is only computed when `target` contains strings instead of integers.
See `tasks.py` for details on how tasks return either strings or integers.
If your task returns strings then you must pass `–print-wer-samples` during inference so that we can log samples whose WER was computed.
If your task returns integers then you must pass `–print-sample-breakdown` during inference so that we can log samples whose accuracy was computed.
model=model,
model.forward(*args,**kwargs) -> tuple(torch.Tensor) -> torch.Tensor,…
Model instance passed through forward method.
See also `tasks.py`
Model instances are returned by tasks’ setup methods which themselves are called by FairseqTask.setup_task(…).
For example see how translation models are setup here https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L128-L133 which calls mBART.setup_model(…) here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart.py#L185-L194 which ultimately returns an instance of MBartModel here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart/model.py#L55-L63 which is passed through criterion.forward(…).
Note that model.forward(…)’s output will depend on whether you’re training/validation/inference so it might be useful know what each mode outputs:
Training mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* encoder_out : Encoder output features.(tensor([batch_size,length,num_features]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)
Validation mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
Inference mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)
net_output=net_output,
tuple(torch.Tensor) -> torch.Tensor,…
Model forward method output.
See also `tasks.py`
Model instances are returned by tasks’ setup methods which themselves are called by FairseqTask.setup_task(…).
For example see how translation models are setup here https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L128-L133 which calls mBART.setup_model(…) here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart.py#L185-L194 which ultimately returns an instance of MBartModel here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart/model.py#L55-L63 which is passed through criterion.forward(…).
Note that model.forward(…)’s output will depend on whether you’re training/validation/inference so it might be useful know what each mode outputs:
Training mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* encoder_out : Encoder output features.(tensor([batch_size,length,num_features]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)
Validation mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes])) Inference mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)
target=target,
torch.LongTensor(tensor([[length,batch]])->LongTensor[length,batch]) | torch.FloatTensor(tensor([[length,batch]])->FloatTensor[length,batch]) | LongTensor(length=batch)->LongTensor[length] | FloatTensor(length=batch)->FloatTensor[length] | LongTensor(length=batch)->LongTensor[length] | FloatTensor(length=batch)->FloatTensor[length] | LongTensor(batch=length)->LongTensor[length] | FloatTensor(batch=length)->FloatTensor[length] | str(batch=length)->str[length] | list(str,length=batch)->list(str)[length] | list(list(str),length=batch)->list(list(str))[length]
Target sequence(s).
See also `tasks.py`
Model instances are returned by tasks’ setup methods which themselves are called by FairseqTask.setup_task(…).
For example see how translation models are setup here https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L128-L133 which calls mBART.setup_model(…) here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart.py#L185-L194 which ultimately returns an instance of MBartModel here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart/model.py#L55-L63 which is passed through criterion.forward(…).
Note that depending on whether you’re training/validation/inference then targets will vary slightly:
Training targets look like this:
torch.LongTensor(tensor([[sequence_length,batch]])->LongTensor(sequence_length,batch))
For example let’s say our dataset contains two sequences [“the cat sat”, “on my mat”] then our batch would look something like this:
[[‘the’, ‘on’],
[‘cat’, ‘my’],
[‘sat’, ‘mat’]]
Which gets converted into tensors like so:
[[ 4, 10],
[ 5, 23],
[ 6, 32]]
Where numbers correspond indices into dictionary object returned via dictionary.encode_line(…)
e.g.
>>> dictionary.encode_line(“the cat sat”)
>>> [‘the’, ‘cat’, ‘sat’]
>>> dictionary.encode_line(“the cat sat”, append_eos=True)
>>> [‘the’, ‘cat’, ‘sat’, ”, ”, ”, ”, ”, …]
Note that we also append special symbols such as ” denoting end-of-sentence ” denoting beginning-of-sentence ” denoting padding symbol(s) etc… These symbols will vary depending on your task.
Validation targets look like this:
torch.LongTensor(tensor([[sequence_length,batch]])->LongTensor(sequence_length,batch)) OR torch.FloatTensor(tensor([[sequence_length,batch]])->FloatTensort(sequence_length,batch))
Same as training but instead labels/targets come encoded as floats instead since we don’t need integer indices anymore since we don’t need gold sequences anymore.
Inference targets look like this:
LongTensort(length=batch)->LongTensort[length] OR FloatTensort(length=batch)->FloatTensort[length]
In inference we don’t have access to gold sequences since we’re predicting them ourselves so instead we use previously predicted sequences i.e., start-of-sentence symbol ” followed by previously predicted sequence e.g., “, w0_hat,…wn_hat” where w_hat denotes predicted token(s).
We do however need access gold sequences i.e., “, w0,…wn” where wi denotes actual gold token(s). So instead we provide these separately via generator.generate(…).target method.
@staticmethod
def reduce_metrics(logging_outputs) -> None:
super().reduce_metrics(logging_outputs)
MultiBLEUCriterion.reduce_metrics(logging_outputs=logging_outputs) -> None
python linenums=”{:.linenums}”
import logging
import math
from fairseq.criterions.label_smoothed_cross_entropy import (
LabelSmoothedCrossEntropyCriterion,)
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
logger = logging.getLogger(__name__)
def _compute_accuracy(logits, targets):
max_probs = logits.max(dim=-1)[0]
probs_pred = logits.max(dim=-1)[1]
non_pad_mask = targets.ne(0)
n_correct = max_probs.masked_select(non_pad_mask).numel()
n_correct += (probs_pred == targets).masked_select(non_pad_mask).sum().item()
total = non_pad_mask.sum().item()
return n_correct / total
def _compute_wer(hypothesis_tokens, reference_tokens):
“””
Compute word error rate given two tokenized sentences.
Args:
* hypothesis_tokens (`list`: “str“): Hypothesis tokens.
* reference_tokens (`list`: “str“): Reference tokens.
Returns:
* “float“: Word Error Rate computed between “reference_tokens“ nand “hypothesis_tokens“ .
“””
import jiwer as jiwer_module
def compute_wer(hypothesis_string:str=None,hypothesis_token:str=None,
reference_string:str=None,
reference_token:str=None)
->float:
if isinstance(hypothesis_string,str):
hypotheses=hypothesis_string
else if isinstance(hypothesis_token,str):
hypotheses=hypothesis_token
else :
raise TypeError(‘Invalid type {} received’.format(type(hypotheses)))
if isinstance(reference_string,str):
references=reference_string
else if isinstance(reference_token,str):
references=reference_token
else :
raise TypeError(‘Invalid type {} received’.format(type(references)))
return jiwer_module.wer(” “.join(hypotheses),” “.join(references))
def _compute_moses_multi_bleu(hypothesis_tokens_list:list[list[str]],
reference_tokens_list:list[list[list[str]]],lowercase=False,
tokenize=False)
->tuple[float,list]:
logger.info(‘Computing Moses multi-BLEU…’)
logger.info(‘tHypotesis Tokens:ntt{}’.format(“nt”.join([“tt{}”.format(” “.join(tokens))for tokens in hypothesis_tokens_list])))
logger.info(‘tReference Tokens:ntt{}’.format(“nt”.join([“tt{}”.format(” “.join(tokens))for ref_set_of_refence_setsin references_setof_reference_setsfor ref_set_of_refence_setsin references_setof_reference_setsfor ref_setof_referencesin ref_set_of_refence_setsref_setof_referencestokensin ref_setof_referencesfor ref_setof_referencesref_setof_referencesref_setof_references])))
logger.info(‘tlowercase={}’.format(lowercase))
logger.info(‘ttokenize={}’.format(tokenize))
import math,sacrebleau as sb_module
max_order=min(len(sb_module.BLEUSCORES),len(sb_module.BLEUTOKENIZERS))
sacrebleau_args={}
sacrebleau_args[“tokenize”]=”none”
sacrebleau_args[“lowercase”]=False
if lowercase==True:sacrebuale_args[“lowercase”]=True
if tokenize==True:sacrebuale_args[“tokenize”]=”13a”
moses_multi_bleus=[]
moses_multi_scorers=[]
for orderin range(1,max_order+1):
ref_sets_for_the_current_ngram_order=[[sentences.split()for sentencesin sentencessetofsetsofsentencesin setsofsentencessetsin setsofsentencessetsfor setsofsentencessetsin referencessetsofsentencessetsreferences][i][j][order]-+1for jina range(len(setsofsentencessets[i]))][i][j][order]-+1for iina range(len(setsofsentencessets))][i][j][order]-+1for iina range(len(setsofsentencessets))]
hypsets_for_the_current_ngram_order=[[sentences.split()foreach sentencesinsentencesthypsetsforcurentngramordersents][i][j][order]-+1foreach jina range(len(sentencesthypsetsforcurentngramorders[i]))][i][j][order]-+1foreach iina range(len(sentencesthypsetsforcurentngramorders))]
score=sb_module.scorers(order)(hypsets_for_the_current_ngram_orderset,hypsets_for_the_current_ngram_orderset,set(ref_sets_for_the_current_ngram_orderset))[score]
moses_multi_blues.append(score)
if orderequalsmax_orderevents:
moses_multi_scorsers.append(sb_module.scorers(orderevents))
else :
moses_multi_blues.append(scoremath.pow((len(sentencesthypsetsforcurentngramorders)/len(setsofsentencessetsforcurentngramorders)),math.pow((math.pow((orderevents/max_orderevents),orderevents-max_orderevents)))))
return moses_multi_blues[max_orderevents],moses_multi_scorsers[max_orderevents]
def _compute_moses_multi_bleudetok(hypthesiss:str,listofflistsoffstringsreferences:list,listofflistsoffstringsreferences:list.lowercased=False)
->float:
import math,sacrebluetoothsb_module
maxordernumber=min(len(sb_module.BLEUSCORES),len(sb_module.BLEUTOKENIZERS))
sacbrebluetooth_arguments={“tokenizene”:”none”,”detokenizemozes”:”true”}
sacbrebluetooth_arguments[“lowercasetrue”]=False
if lowercased==True:sacbrebluetooth_arguments[“lowercasetrue”]=True
return sb_module.corpus_blues(hypthesiss,[referencesforteachreferenceslistforteachreferenceslistin referenceslistforteachreferenceslistsfor referenceslistforteachreferenceslists],**sbmodulearguments)
class MultiBLEUCriterion(LabelSmoothedCrossEntropyCriterion):
def __init__(self,*args,**kwargs):
super().__init__(*args,**kwargs)
self.multi_bluetokenized_detokezerifmulti_bluetokenized_detokezerifelseNone
def forward(self,*args,**kwargs):
netoutput=model(**kwards)
self.reduction_metrics(netoutput,target,**kwards)
return super().forward(model=target,**kwards)
def reduction_metrics(self,*args,**kwards):
super().reduce_metrics(kwards=kwards)
self.multibleutokenscore=multiplescore(multiplescore,multiplescore,multiplescore)
@staticmethod
def add_arguments(parser):
parser.add_argument(“–multi-bluedtok”,action=’store_true’)
parser.add_argument(“–multi-bluedtok-tokenizer”,type=str,default=None)
parser.add_argument(“–multibluedtok-lowercased”,action=’store_true’)
“Maccabi Haifa’s youth system is second to none; it’s where future stars are born.” – Former Coach Zvi Rosenfeld
“The passion of these young players is infectious; they play with heart every single match.” – Fan Club President David Cohen
- Solid defensive record keeps them competitive even when not at full strength offensively.
- Youthful energy provides an edge over more experienced but less dynamic opponents.
- Inconsistency in performance can lead to unexpected results against weaker teams.
float,float,floatnll_loss
negative log likelihood loss averaged across batch elements
,
self._stats_cache[‘ntokens’]
int -> int
number of tokens processed during this iteration
,
self._stats_cache[‘nsentences’]
int -> int
number of sentences processed during this iteration
,
self._stats_cache[‘sample_size’]
int -> int
effective sample size used in this iteration
,
self._stats_cache[‘accuracy’]
float -> float
accuracy averaged across batch elements
,
self._stats_cache[‘wer’]
float -> float
word error rate averaged across batch elements
WER is only computed when `target` contains strings instead of integers.
See `tasks.py` for details on how tasks return either strings or integers.
If your task returns strings then you must pass `–print-wer-samples` during inference so that we can log samples whose WER was computed.
If your task returns integers then you must pass `–print-sample-breakdown` during inference so that we can log samples whose accuracy was computed.model=model,
model.forward(*args,**kwargs) -> tuple(torch.Tensor) -> torch.Tensor,…
Model instance passed through forward method.
See also `tasks.py`
Model instances are returned by tasks’ setup methods which themselves are called by FairseqTask.setup_task(…).
For example see how translation models are setup here https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L128-L133 which calls mBART.setup_model(…) here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart.py#L185-L194 which ultimately returns an instance of MBartModel here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart/model.py#L55-L63 which is passed through criterion.forward(…).
Note that model.forward(…)’s output will depend on whether you’re training/validation/inference so it might be useful know what each mode outputs:
Training mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* encoder_out : Encoder output features.(tensor([batch_size,length,num_features]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)
Validation mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
Inference mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)net_output=net_output,
tuple(torch.Tensor) -> torch.Tensor,…
Model forward method output.
See also `tasks.py`
Model instances are returned by tasks’ setup methods which themselves are called by FairseqTask.setup_task(…).
For example see how translation models are setup here https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L128-L133 which calls mBART.setup_model(…) here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart.py#L185-L194 which ultimately returns an instance of MBartModel here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart/model.py#L55-L63 which is passed through criterion.forward(…).
Note that model.forward(…)’s output will depend on whether you’re training/validation/inference so it might be useful know what each mode outputs:
Training mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* encoder_out : Encoder output features.(tensor([batch_size,length,num_features]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)
Validation mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes])) Inference mode outputs:
* logits : Logits tensor containing unnormalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* lprobs : Log probabilities tensor containing normalized probabilities over target words at each position.(tensor([batch_size,num_classes]))
* incremental_state : Dictionary containing cached information needed for incremental decoding.(dict)target=target,
torch.LongTensor(tensor([[length,batch]])->LongTensor[length,batch]) | torch.FloatTensor(tensor([[length,batch]])->FloatTensor[length,batch]) | LongTensor(length=batch)->LongTensor[length] | FloatTensor(length=batch)->FloatTensor[length] | LongTensor(length=batch)->LongTensor[length] | FloatTensor(length=batch)->FloatTensor[length] | LongTensor(batch=length)->LongTensor[length] | FloatTensor(batch=length)->FloatTensor[length] | str(batch=length)->str[length] | list(str,length=batch)->list(str)[length] | list(list(str),length=batch)->list(list(str))[length]
Target sequence(s).
See also `tasks.py`
Model instances are returned by tasks’ setup methods which themselves are called by FairseqTask.setup_task(…).
For example see how translation models are setup here https://github.com/pytorch/fairseq/blob/master/fairseq/tasks/translation.py#L128-L133 which calls mBART.setup_model(…) here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart.py#L185-L194 which ultimately returns an instance of MBartModel here https://github.com/pytorch/fairseq/blob/master/fairseq/models/mbart/model.py#L55-L63 which is passed through criterion.forward(…).
Note that depending on whether you’re training/validation/inference then targets will vary slightly:
Training targets look like this:
torch.LongTensor(tensor([[sequence_length,batch]])->LongTensor(sequence_length,batch))
For example let’s say our dataset contains two sequences [“the cat sat”, “on my mat”] then our batch would look something like this:
[[‘the’, ‘on’],
[‘cat’, ‘my’],
[‘sat’, ‘mat’]]
Which gets converted into tensors like so:[[ 4, 10],
[ 5, 23],
[ 6, 32]]Where numbers correspond indices into dictionary object returned via dictionary.encode_line(…)
e.g.>>> dictionary.encode_line(“the cat sat”)
>>> [‘the’, ‘cat’, ‘sat’]
>>> dictionary.encode_line(“the cat sat”, append_eos=True)
>>> [‘the’, ‘cat’, ‘sat’, ”, ”, ”, ”, ”, …]Note that we also append special symbols such as ” denoting end-of-sentence ” denoting beginning-of-sentence ” denoting padding symbol(s) etc… These symbols will vary depending on your task.
Validation targets look like this:
torch.LongTensor(tensor([[sequence_length,batch]])->LongTensor(sequence_length,batch)) OR torch.FloatTensor(tensor([[sequence_length,batch]])->FloatTensort(sequence_length,batch))
Same as training but instead labels/targets come encoded as floats instead since we don’t need integer indices anymore since we don’t need gold sequences anymore.
Inference targets look like this:
LongTensort(length=batch)->LongTensort[length] OR FloatTensort(length=batch)->FloatTensort[length]
In inference we don’t have access to gold sequences since we’re predicting them ourselves so instead we use previously predicted sequences i.e., start-of-sentence symbol ” followed by previously predicted sequence e.g., “, w0_hat,…wn_hat” where w_hat denotes predicted token(s).
We do however need access gold sequences i.e., “, w0,…wn” where wi denotes actual gold token(s). So instead we provide these separately via generator.generate(…).target method.
@staticmethod
def reduce_metrics(logging_outputs) -> None:super().reduce_metrics(logging_outputs)
MultiBLEUCriterion.reduce_metrics(logging_outputs=logging_outputs) -> None
python linenums=”{:.linenums}”
import logging
import mathfrom fairseq.criterions.label_smoothed_cross_entropy import (
LabelSmoothedCrossEntropyCriterion,)
from fairseq.dataclass.utils import convert_namespace_to_omegaconflogger = logging.getLogger(__name__)
def _compute_accuracy(logits, targets):
max_probs = logits.max(dim=-1)[0]
probs_pred = logits.max(dim=-1)[1]
non_pad_mask = targets.ne(0)
n_correct = max_probs.masked_select(non_pad_mask).numel()
n_correct += (probs_pred == targets).masked_select(non_pad_mask).sum().item()
total = non_pad_mask.sum().item()
return n_correct / totaldef _compute_wer(hypothesis_tokens, reference_tokens):
“””
Compute word error rate given two tokenized sentences.Args:
* hypothesis_tokens (`list`: “str“): Hypothesis tokens.
* reference_tokens (`list`: “str“): Reference tokens.
Returns:
* “float“: Word Error Rate computed between “reference_tokens“ nand “hypothesis_tokens“ .
“””
import jiwer as jiwer_moduledef compute_wer(hypothesis_string:str=None,hypothesis_token:str=None,
reference_string:str=None,
reference_token:str=None)
->float:if isinstance(hypothesis_string,str):
hypotheses=hypothesis_string
else if isinstance(hypothesis_token,str):
hypotheses=hypothesis_token
else :
raise TypeError(‘Invalid type {} received’.format(type(hypotheses)))
if isinstance(reference_string,str):
references=reference_string
else if isinstance(reference_token,str):
references=reference_token
else :
raise TypeError(‘Invalid type {} received’.format(type(references)))
return jiwer_module.wer(” “.join(hypotheses),” “.join(references))
def _compute_moses_multi_bleu(hypothesis_tokens_list:list[list[str]],
reference_tokens_list:list[list[list[str]]],lowercase=False,
tokenize=False)
->tuple[float,list]:logger.info(‘Computing Moses multi-BLEU…’)
logger.info(‘tHypotesis Tokens:ntt{}’.format(“nt”.join([“tt{}”.format(” “.join(tokens))for tokens in hypothesis_tokens_list])))
logger.info(‘tReference Tokens:ntt{}’.format(“nt”.join([“tt{}”.format(” “.join(tokens))for ref_set_of_refence_setsin references_setof_reference_setsfor ref_set_of_refence_setsin references_setof_reference_setsfor ref_setof_referencesin ref_set_of_refence_setsref_setof_referencestokensin ref_setof_referencesfor ref_setof_referencesref_setof_referencesref_setof_references])))
logger.info(‘tlowercase={}’.format(lowercase))
logger.info(‘ttokenize={}’.format(tokenize))import math,sacrebleau as sb_module
max_order=min(len(sb_module.BLEUSCORES),len(sb_module.BLEUTOKENIZERS))
sacrebleau_args={}
sacrebleau_args[“tokenize”]=”none”
sacrebleau_args[“lowercase”]=Falseif lowercase==True:sacrebuale_args[“lowercase”]=True
if tokenize==True:sacrebuale_args[“tokenize”]=”13a”
moses_multi_bleus=[]
moses_multi_scorers=[]for orderin range(1,max_order+1):
ref_sets_for_the_current_ngram_order=[[sentences.split()for sentencesin sentencessetofsetsofsentencesin setsofsentencessetsin setsofsentencessetsfor setsofsentencessetsin referencessetsofsentencessetsreferences][i][j][order]-+1for jina range(len(setsofsentencessets[i]))][i][j][order]-+1for iina range(len(setsofsentencessets))][i][j][order]-+1for iina range(len(setsofsentencessets))]
hypsets_for_the_current_ngram_order=[[sentences.split()foreach sentencesinsentencesthypsetsforcurentngramordersents][i][j][order]-+1foreach jina range(len(sentencesthypsetsforcurentngramorders[i]))][i][j][order]-+1foreach iina range(len(sentencesthypsetsforcurentngramorders))]
score=sb_module.scorers(order)(hypsets_for_the_current_ngram_orderset,hypsets_for_the_current_ngram_orderset,set(ref_sets_for_the_current_ngram_orderset))[score]
moses_multi_blues.append(score)
if orderequalsmax_orderevents:
moses_multi_scorsers.append(sb_module.scorers(orderevents))
else :
moses_multi_blues.append(scoremath.pow((len(sentencesthypsetsforcurentngramorders)/len(setsofsentencessetsforcurentngramorders)),math.pow((math.pow((orderevents/max_orderevents),orderevents-max_orderevents)))))
return moses_multi_blues[max_orderevents],moses_multi_scorsers[max_orderevents]
def _compute_moses_multi_bleudetok(hypthesiss:str,listofflistsoffstringsreferences:list,listofflistsoffstringsreferences:list.lowercased=False)
->float:import math,sacrebluetoothsb_module
maxordernumber=min(len(sb_module.BLEUSCORES),len(sb_module.BLEUTOKENIZERS))
sacbrebluetooth_arguments={“tokenizene”:”none”,”detokenizemozes”:”true”}
sacbrebluetooth_arguments[“lowercasetrue”]=Falseif lowercased==True:sacbrebluetooth_arguments[“lowercasetrue”]=True
return sb_module.corpus_blues(hypthesiss,[referencesforteachreferenceslistforteachreferenceslistin referenceslistforteachreferenceslistsfor referenceslistforteachreferenceslists],**sbmodulearguments)
class MultiBLEUCriterion(LabelSmoothedCrossEntropyCriterion):
def __init__(self,*args,**kwargs):
super().__init__(*args,**kwargs)
self.multi_bluetokenized_detokezerifmulti_bluetokenized_detokezerifelseNone
def forward(self,*args,**kwargs):
netoutput=model(**kwards)
self.reduction_metrics(netoutput,target,**kwards)
return super().forward(model=target,**kwards)
def reduction_metrics(self,*args,**kwards):
super().reduce_metrics(kwards=kwards)
self.multibleutokenscore=multiplescore(multiplescore,multiplescore,multiplescore)
@staticmethod
def add_arguments(parser):
parser.add_argument(“–multi-bluedtok”,action=’store_true’)
parser.add_argument(“–multi-bluedtok-tokenizer”,type=str,default=None)
parser.add_argument(“–multibluedtok-lowercased”,action=’store_true’)